
Ecography ECOG-04886
Kass, J. M., Anderson, R. P., Espinosa-Lucas, A., Juárez-
Jaimes, V., Martínez-Salas, E., Botello, F., Tavera, G., 
Flores-Martínez, J. J. and Sánchez-Cordero, V. 2019. 
Biotic predictors with phenological information 
improve range estimates for migrating monarch 
butterflies in Mexico. – Ecography doi: 10.1111/
ecog.04886

Supplementary material



Appendix 1: Supplemental Information  
 
1. Data preparation of occurrences  
 
Data for both plants and monarchs were prepared for modeling in similar ways. To reduce the effects of 
sampling bias due to spatially clustered localities (Veloz 2009), we spatially thinned each species’ 
occurrence records by 10 km using the R package spThin (Aiello-Lammens et al. 2015). We ran the 
thinning algorithm for 100 iterations in order to maximize the number of records retained. To avoid 
including model training areas inaccessible to species because of dispersal constraints (Peterson et al. 
2011), and also to include only those areas proximal to sampled records, we defined study extents for 
all species by delineating minimum convex polygons (MCPs) around occurrence localities buffered by 
100 km. For monarchs, the CONANP occurrence localities alone were used to delineate the MCP, as 
we had high confidence that this dataset accurately represented the migrating eastern population. We 
sampled 25,000 background points within MCPs—more points than are typically sampled— as 
inadequate background sampling can lead to artifactually truncated environmental responses (Guevara 
et al. 2018).  
 
2. SDM methodology details: plants and monarchs  
 
We tuned SDMs using Maxent v3.4.1 (Phillips et al. 2017) over a range of model settings with the R 
package ENMeval v0.3 (Muscarella et al. 2014). Maxent performs internal variable selection using a 
form of complexity penalization called regularization: feature classes control the various shapes allowed 
for the modeled response, affecting how complex the response can be, while increasing the 
regularization multiplier enforces simpler models with fewer parameters (Phillips and Dudík 2008, Merow 
et al. 2013). We explored combinations of simple and complex feature classes: linear (L), quadratic (Q), 
and hinge (H), resulting in the combinations L, LQ, H, and LQH. We specifically chose to exclude the 
feature classes “product” and “threshold” from the analysis, as their omission results in models that are 
easier to interpret, or do not show better performance than hinge features, respectively (Phillips et al. 
2017). We also explored a range of regularization multipliers that increasingly penalized complexity of 
fit: the values 1 through 5 with a step value of 0.5, resulting in 40 candidate models for each species (4 
combinations of feature classes x 10 regularization multipliers).  
 
We selected optimal model settings for plants based on measures of discrimination and omission on 
spatially withheld occurrence data instead of relying on information criteria, as we were most interested 
in optimizing model performance for plants and not in comparing between models representing different 
hypotheses. Spatial cross validation reduces the effects of spatial autocorrelation in the occurrence data, 
which avoids overly optimistic model performance due to spatial dependence between localities that can 
occur through random cross validation (Roberts et al. 2017).  

 
We used 4-fold spatial partitions delineated by longitude and latitude positioned to balance the number 
of localities in each fold (“block” partition method; Muscarella et al. 2014). We iteratively built models for 
each combination of feature class and regularization multiplier on the occurrence and background values 
from three of the four folds and predicted the occurrences from the withheld fold, then averaged model 
performance over the four folds. Before selecting models with optimal settings, we ensured that overly 
complex models would not be selected by first filtering out candidate models for which AIC cannot be 
calculated (i.e., those that had more non-zero coefficients than occurrence localities). We evaluated two 
performance statistics that rate performance on withheld data sequentially to select models. We first 
selected the models with the lowest average omission rate using the 10-percentile training presence 
(OR10), which is the percentage of test occurrences with predicted suitabilities below the 10 percentile 
of training values. When multiple models had identical OR10, we broke ties by choosing the model with 
the highest average test AUC (area under the curve of the receiving operator characteristic; Fielding and 



Bell 1997) over the withheld folds (AUCtest), a standard threshold-independent measure of discriminatory 
ability on withheld data for SDMs (Peterson et al. 2011). Although valid criticism exists concerning the 
use of AUC for rating model accuracy and comparing values between studies with different extents, 
variables, or species (Lobo et al. 2008), we use AUC here to compare between models built with the 
same data and extents that share low omission rates in order to select model settings that lead to high 
relative performance. We evaluated monarchs SDMs based solely on AICc, as we had the task of 
comparing between models with different numbers of parameters (see Appendix A5).  
 
3. Species richness estimates for plants  
 
For each plant species, the model with optimal settings was used to predict suitability values across the 
respective species-specific study extent, resulting in model prediction rasters for each species. We made 
model predictions using the cloglog output for Maxent v3.4.1, a scaling of the raw Maxent output (for 
which direct comparisons of species predictions with different study extents cannot be made; Phillips 
and Dudík 2008) that preserves rank and estimates probability of presence with values between 0 and 
1. Transforming to a probability scale enabled us to combine SDM prediction rasters from multiple 
species and thus estimate species richness over a shared extent (Ferrier and Guisan 2006). Calabrese 
et al. (2014) found that summing continuous SDM predictions instead of thresholded presence/absence 
rasters results in more accurate estimates of site-level species richness. Before summing, we masked 
each prediction raster by the species-specific study extent to exclude predicted areas far from observed 
data (even if they were highly suitable according to the model).  
 
4. Low-abundance plant species removal analysis  
 
As plant species with low abundance throughout their ranges could potentially bias the richness 
estimates towards areas that do not necessarily have a high plant population density (which should be 
more closely associated with monarch suitability than plant species richness, per se), we re- moved the 
SDM predictions of low-abundance species before creating the biotic variables and ran a separate set 
of models to see if this would affect our results. All the tree species were retained, but we removed five 
Asclepias spp. for this comparison: A. circinalis, A. elata, A. fournieri, A. sperryi, and A. tuberosa.  
 
This analysis resulted in small changes to the stationary models, but not the monthly, as none of the 
species removed are listed as flowering for September through November in our phenology database. 
With the exception of the combined stationary model for September, which had the same AICc score as 
the combined monthly model, the results remained the same as the original analysis (Tbl. S3).  
 
5. Rationale for model selection of monarch SDMs by AICc  
 
Although performance metrics such as AUC can be used to rate relative performance over suites of 
models with different settings (Radosavljevic and Anderson 2014), comparing models with differing 
numbers of predictor variables is difficult because complex and overfit models often have artifactually 
inflated accuracy scores. Although some ecological modeling studies enforce variable reduction to 
equalize variable numbers across models (Bateman et al. 2012), others use information criteria, 
particularly AIC, to select models in these cases (Johnson and Omland 2004). SDMs selected by AIC 
may be more robust to sampling bias and have been shown to be simpler when compared to models 
selected via a cross-validation approach (Galante et al. 2018). Therefore, information criteria may be a 
preferable choice to cross validation when comparing between competing sets of predictor variables, 
though selected models should also be evaluated for their performance on withheld data to confirm their 
accuracy. Therefore, of the candidate monarch SDMs for each variable set per month, we selected the 
model with the lowest AICc value (Warren and Seifert 2011).  
 
6. Null model methods  
 
Raes & ter Steege (2007) pioneered the null model approach for SDMs, which involves building models 
based on localities randomly sampled across the study extent, plotting a null distribution of an evaluation 
statistic, and then conducting a one-tailed t-test for significance. Regarding evaluation of null SDMs, 



Raes & ter Steege (2007) used AUC calculated on the training localities instead of withheld data, and 
later studies improved on this by using random cross validation (Beale et al. 2008). Bohl et al. (2019) 
proposed instead evaluating null models on the same withheld data as were employed for testing the 
real models. We followed this latter approach but made a novel modification to evaluate null models 
using k - 1 spatial block cross validation (using k = 4 folds rather than 2). To begin, we assigned the 
same spatial folds applied to the monarch occurrence localities to every grid cell in the study extent. For 
each iteration, we randomly sampled n localities across the training folds, where n is equal to the total 
number of real occurrence localities in these folds, and then evaluated the model on the real monarch 
occurrences in the withheld fold (also using the same background values). Per month, we built null SDMs 
for each variable set using the same model settings as those chosen as optimal for the real models. We 
calculated AUCtest and average OR10 for each null model. We repeated this process 1000 times, 
resulting in distributions of 1000 null test statistics per month/variable set. Finally, we compared the real 
model evaluation statistics to those of the null distributions to determine significance with α = 0.05.  
 
7. Plant SDM results  
 
The following descriptions of Maxent model settings will use a letter-number notation for feature class 
and regularization multiplier: e.g., linear, quadratic, and hinge feature classes with regularization 
multiplier 2.5 will be notated as LQH2.5. The number of Maxent model parameters with non-zero 
coefficients (i.e., lambda weights as described in Phillips and Dudík 2008) will be referred to as 
"parameters". The simplest models were for A. circinalis (LQ2, 6 parameters) and Juniperus monticola 
(LQ4, 4 parameters), while the most complex models were for A. tuberosa (H1.5, 147 parameters) and 
Taxodium mucronatum (LQH2, 56 parameters). The models that omitted the fewest test localities were 
for A. similis (OR10 = 0.062) and Pinus devoniana (OR10 = 0.028), and those that omitted the most 
were for A. fournieri (0.292) and Quercus rugosa (0.268). The average OR10 across all plant species 
was 0.150 for Asclepias spp. and 0.128 for roosting trees. As AUC cannot be directly compared for 
models trained on different study extents (Jiménez-Valverde 2012), we do not report these statistics 
here.  

 
8. Null model results  
 
For AUCtest, the September models had significantly high scores at α = 0.05 (above the 95th percentile 
of the null distribution), and October combined monthly, November biotic monthly, and November 
combined monthly were just below this threshold (Fig. S5). All the combined monthly models performed 
quite well for AUCtest compared to the null distributions. In comparison, no models selected via AICc had 
significantly low scores for average OR10 (i.e., performing better than the lowest 5th percentile), and only 
October biotic monthly had a candidate model that met this criterion (although October abiotic and 
October combined monthly were just above the margin). Unlike for AUCtest, the combined monthly 
models performed poorly for average OR10: although the September and October models had scores 
lower than the 50th percentile (indicating they performed better than 50% of null models, but not 95%), 
the November model performed worse than this (Fig. S6).  
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Appendix 2: Supplementary Tables and Figures  
 
Table A1. All plant species (nectar plants and roosting trees) initially considered for analysis, with sample 
size of occurrence localities before and after spatial thinning by 10 km. Those with sample sizes >15 for 
occurrences in Mexico after thinning (light gray) were retained for analysis.  
 
 

species no. samples no. thinned samples 
Asclepias asperula 483 282  
A. auriculata 246 91  
A. brachystephana 296 127  
A. circinalis 52 18  
A. coulteri 83 22  
A. curassavica 3776 1062  
A. elata 114 54  
A. engelmanniana 132  
A. fournieri 105 27  
A. glaucescens 676 175  
A. jaliscana 326 94  
A. linaria 2104 691  
A. mexicana 190 52  
A. oenotheroides 581 207  
A. otarioides 91 47  
A. ovata 314 100  
A. pellucida 140 47  
A. similis 275 64  
A. sperryi 59 34  
A. subverticillata 463 278  
A. texana 35  
A. tuberosa 854 492  
A. verticillata 571  
A. viridis 299  
A. virletii 22  
Abies religiosa 160 58  
Carya illinoinensis 259 136  
Cupressus lindleyi 59 33  
Juglans hirsuta 19  
Juglans major 221 129  
Juglans microcarpa 92  
Juglans mollis 105 44  
Juglans pyriformis 48 26  
Juniperus deppeana 671 273  
Juniperus monticola 101 25  
Pinus ayacahuite 199 73  
Pinus devoniana 133 34  
Pinus hartwegii 526 49  
Pinus oocarpa 241 90  
Pinus pseudostrobus 628 144  
Pinus rudis 40 22  
Pinus teocote 331 104  
Quercus acutifolia 148 91  
Quercus candicans 30 17  
Quercus castanea 489 204  
Quercus crassifolia 438 182  
Quercus laurina 359 155  
Quercus obtusata 419 173  



Quercus rugosa 622 226  
Quercus salicifolia 35 22  
Taxodium distichum 286  
Taxodium mucronatum 273 146 

 
 
  



Table A2. Maxent SDM settings chosen as optimal for Asclepias spp. and trees and associated 
performance statistics. Settings shown are feature class combinations (features) and regularization 
multiplier (rm). Statistics shown are AUC calculated on training data (AUCtrain) and averaged over testing 
data (AUCtest), omission rates for 10 percentile training values (OR10), and the number of non-zero 
coefficients (nparam).  
 

species features rm AUCtrain AUCtest OR10 nparam  
Asclepias asperula L 3 0.850 0.819 0.153 12  
A. auriculata H 4.5 0.943 0.918 0.134 29  
A. brachystephana H 5 0.930 0.884 0.118 33  
A. circinalis LQ 2 0.973 0.968 0.100 6  
A. coulteri LQH 2 0.993 0.966 0.142 15  
A. curassavica LQ 0.5 0.956 0.957 0.130 21  
A. elata L 2.5 0.858 0.766 0.074 11  
A. fournieri L 2 0.916 0.848 0.292 9  
A. glaucescens LQ 3 0.964 0.957 0.115 11  
A. jaliscana L 5 0.902 0.866 0.235 7  
A. linaria L 5 0.914 0.900 0.145 8  
A. mexicana L 2 0.953 0.924 0.212 9  
A. oenotheroides L 2.5 0.888 0.867 0.140 14  
A. otarioides L 0.5 0.949 0.922 0.110 13  
A. ovata LQ 0.5 0.953 0.909 0.250 27  
A. pellucida L 5 0.915 0.872 0.106 8  
A. similis LQ 4 0.947 0.935 0.062 12  
A. sperryi L 5 0.906 0.875 0.149 7  
A. subverticillata H 4.5 0.917 0.890 0.166 69  
A. tuberosa H 1.5 0.916 0.864 0.173 147  
Abies religiosa LQ 5 0.969 0.953 0.106 8  
Carya illinoinensis L 0.5 0.851 0.752 0.213 19  
Cupressus lindleyi LQ 4.5 0.946 0.933 0.094 8  
Juglans major H 5 0.954 0.951 0.086 62  
Juglans mollis LQ 5 0.960 0.928 0.114 11  
Juglans pyriformis LQ 1 0.956 0.932 0.036 11  
Juniperus deppeana LQ 4.5 0.940 0.914 0.129 12  
Juniperus monticola LQ 4 0.984 0.978 0.113 4  
Pinus ayacahuite L 3 0.962 0.942 0.150 11  
P. devoniana LQ 3.5 0.975 0.976 0.028 8  
P. hartwegii H 5 0.983 0.980 0.061 11  
P. oocarpa L 2.5 0.915 0.852 0.218 10  
P. pseudostrobus L 4 0.902 0.870 0.132 12  
P. rudis H 3.5 0.922 0.913 0.092 14  
P. teocote L 5 0.934 0.915 0.183 9  
Quercus acutifolia L 4.5 0.925 0.919 0.090 7  
Q. candicans LQH 3.5 0.989 0.979 0.125 6  
Q. castanea LQ 5 0.952 0.941 0.127 8  
Q. crassifolia LQ 5 0.940 0.892 0.241 12  
Q. laurina LQ 4.5 0.953 0.941 0.163 10  
Q. obtusata H 5 0.943 0.932 0.139 27  
Q. rugosa L 2.5 0.942 0.896 0.268 15  
Q. salicifolia LQH 2 0.951 0.931 0.092 12  
Taxodium mucronatum LQH 2 0.964 0.947 0.075 56 

 
  



Table A3. Maxent SDM settings chosen as optimal for monarchs by month and variable group and 
associated performance statistics, after removal of low-abundance Asclepias SDM predictions from the 
estimated richness variable. Only the stationary versions for the biotic and combined models are shown, 
as the monthly versions did not include these species to begin with. Settings shown are feature class 
combinations (features) and regularization multiplier (rm). Statistics shown are AUC calculated on 
training data (AUCtrain) and averaged over testing data (AUCtest), omission rates for 10 percentile (OR10) 
training values, delta AICc (based on the lowest AICc in Tbl. 2), and the number of non-zero coefficients 
(nparam).  
 

month group features rm AUCtrain AUCtest OR10 delta AICc nparam  

September biotic stationary L 0.5 0.693 0.700 0.109 5 2  
combined stationary L 1 0.715 0.729 0.109 0 4 

October biotic stationary LQ 0.5 0.568 0.574 0.178 23 4 
combined stationary LQ 0.5 0.637 0.641 0.070 8 9  

November biotic stationary L 1 0.654 0.644 0.198 41 1  
combined stationary LQH 2 0.767 0.635 0.233 24 21 

 
  



Table A4. Null model result summaries for abiotic, biotic monthly, and combined monthly models, 
reported by evaluation statistic (AUCtest, OR10).  
 

statistic month group min 50% 95% max  

AUCtest 

September 
abiotic 0.285 0.513 0.655 0.745  
biotic monthly 0.245 0.506 0.693 0.747  
combined monthly 0.264 0.508 0.659 0.765  

October 
abiotic 0.277 0.493 0.630 0.729  
biotic monthly 0.279 0.492 0.643 0.735  
combined monthly 0.277 0.492 0.622 0.733  

November 
abiotic 0.306 0.509 0.621 0.703  
biotic monthly 0.246 0.493 0.681 0.756  
combined monthly 0.241 0.501 0.671 0.773  

September 
abiotic 0 0.156 0.375 0.560 

OR10 

biotic monthly 0 0.156 0.422 0.562  
combined monthly 0 0.188 0.432 0.672  

October 
abiotic 0 0.152 0.358 0.517  
biotic monthly 0 0.189 0.387 0.533  
combined monthly 0 0.206 0.418 0.606  

November 
abiotic 0 0.172 0.328 0.509  
biotic monthly 0 0.172 0.371 0.603  
combined monthly 0 0.172 0.405 0.638 

 
  



 
 
Figure A1. Response curves for the September combined monthly model. Dotted red lines delineate the 
minimum and maximum values in the occurrence data used for model training, and the gray box 
represents the range of each variable represented in the occurrence data.  
  



 
 
Figure A2. Response curves for the October combined monthly model. Dotted red lines delineate the 
minimum and maximum values in the occurrence data used for model training, and the gray box 
represents the range of each variable represented in the occurrence data.  
  



 
 
Figure A3. Response curves for the November combined monthly model. Dotted red lines delineate the 
minimum and maximum values in the occurrence data used for model training, and the gray box 
represents the range of each variable represented in the occurrence data.  
  



 
 
Figure A4. Permutation importance percentages for predictor variables in monarch combined monthly 
SDMs with combined abiotic (red) and biotic (green) variables that considered phenology.  
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Figure A5. Null model results for average AUCtest using the same settings and spatial blocks as the real 
models. Shown are the 50th percentile (dashed red line) and 95th percentile (dotted red line) of the null 
distribution, along with the real model value (solid blue line) and the value of the best performing model 
across all explored settings (solid black line).  
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Figure A6. Null model results for average OR10 using the same settings and spatial blocks as the real 
models. Shown are the 50th percentile (dashed red line) and 95th percentile (dotted red line) of the null 
distribution, along with the real model value (solid blue line) and the value of the best performing model 
across all explored settings (solid black line).  
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Appendix 3: R function for running null species distribution models for multiple specified Maxent settings 
using spatial block partitioning 
 
Note: The functionality in this script, which was used for the null model analysis in this study, has since 
been incorporated into the nullENM package (https://github.com/ndimhypervol/nullENM), referenced in 
Bohl et al. (2019). 
 
#' Run null species distribution models for multiple specified Maxent settings 
#' with spatial block partitioning 
#' 
#' @param occs Data frame of species occurrences (longitude, latitude) 
#' @param bg Data frame of background coordinates (longitude, latitude) 
#' @param envs RasterStack of environmental variables 
#' @param optAll List of rows in ENMevaluate object results attribute 
#' corresponding to the optimal model settings per variable group; these 
#' settings will be used to make null species distribution models 
#' @param samps Numeric for number of repetitions 
#' @return List of 1) test AUC values, 2) 10 percentile omission rate values, 
#' 3) the thresholds used to calculate the omission rates 
#' @note Based on code from randomNull() from dismo package v1.1-4 
#' @export 
 
nullSDMs <- function(occs, bg, envs, optAll, samps) { 
  # divide all grid cells in study extent into same partition groups 
  # as the real occurrence data 
  envs.xy <- raster::rasterToPoints(envs[[1]]) 
  envs.parts <- ENMeval::get.block(occ=occs, bg.coords=envs.xy[,1:2]) 
  # extract the cell numbers for the raster 
  envs.xy.cellNum <- raster::extract(envs[[1]], envs.xy[,1:2], cellnumbers=TRUE) 
  # make new rasters that leave out (LO) spatial fold 
  envs.grp <- envs[[1]][[1]] 
  envs.grp[envs.xy.cellNum[,1]] <- envs.parts$bg.grp 
  envsLO1 <- envsLO2 <- envsLO3 <- envsLO4 <- envs.grp 
  envsLO1[envsLO1 == 1] <- NA 
  envsLO2[envsLO2 == 2] <- NA 
  envsLO3[envsLO3 == 3] <- NA 
  envsLO4[envsLO4 == 4] <- NA 
  envsLO <- stack(envsLO1, envsLO2, envsLO3, envsLO4) 
 
  # get the partition groups for occurrences and background used to train the real model 
  obs.parts <- ENMeval::get.block(occ=occs, bg.coords=bg) 
  # find how many occs are in each group 
  occ.grp.tbl <- table(obs.parts$occ.grp) 
  # list to hold the average test AUCs for each variable group 
  aucTestAvgs <- replicate(length(envs), numeric(samps), simplify=FALSE) 
  names(aucTestAvgs) <- names(envs) 
  orTestAvgs <- replicate(length(envs), numeric(samps), simplify=FALSE) 
  names(orTestAvgs) <- names(envs) 
  thrs <- replicate(length(envs), matrix(nrow=4, ncol=samps), simplify=FALSE) 
  # list of maxent arguments for each variable group for maxent.jar 
  mxArgsAll <- lapply(optAll, function(x) ENMeval::make.args(x$rm, x$features)[[1]]) 
 
  # iterate null models 
  for(i in 1:samps) { 
    # list to hold test AUC for all 4 folds for each variable group 
    aucs <- replicate(length(envs), numeric(4), simplify=FALSE) 



    or10s <- replicate(length(envs), numeric(4), simplify=FALSE) 
    thr <- replicate(length(envs), numeric(4), simplify=FALSE) 
    # perform cross validation on 4 spatial folds 
    for(k in 1:4) { 
      # assign training occurrences as all folds but k 
      null.occs.train <- dismo::randomPoints(envsLO[[k]], sum(occ.grp.tbl[-k])) 
      # assign training background the same as above (subset the data frame of variable values) 
      bg.train <- bg[obs.parts$bg.grp != k,] 
      # assign testing occurrences as the real occurrences in the k fold 
      occs.test <- occs[obs.parts$occ.grp == k,] 
      # make vector of 0's and 1's to differentiate occurrences and background for maxent() 
      p <- c(rep(1, nrow(null.occs.train)), rep(0, nrow(bg.train))) 
      # repeat for each variable group with same randomly sampled occurrences 
      for(e in 1:length(envs)) { 
        # extract variable values for training occurrences and testing occurrences 
        occs.train.vals <- raster::extract(envs[[e]], null.occs.train, df=TRUE)[,-1] 
        occs.test.vals <- raster::extract(envs[[e]], occs.test, df=TRUE)[,-1] 
        # get variable values for all background points 
        bg.vals <- raster::extract(envs[[e]], bg, df=TRUE)[,-1] 
        bg.train.vals <- bg.vals[obs.parts$bg.grp != k,] 
        # rbind together training data 
        x <- data.frame(rbind(occs.train.vals, bg.train.vals)) 
        # run model with same fc and regm combination as the optimized real model 
        m <- maxent(x, p, args = mxArgsAll[[e]]) 
        # evaluate model on testing data and full background, and record auc 
        aucs[[e]][k] <- evaluate(occs.test.vals, bg.vals, m)@auc 
 
        # get model predictions for training and testing points 
        p.train <- dismo::predict(m, occs.train.vals) 
        p.test <- dismo::predict(m, occs.test.vals) 
 
        # figure out 90% of total no. of training records 
        n90 <- ceiling(nrow(occs.train.vals) * 0.9) 
        # calculate 10 percentile omission rate 
        train.thr.10 <- rev(sort(p.train))[n90] 
        thr[[e]][k] <- train.thr.10 
        or10s[[e]][k] <- mean(p.test < train.thr.10) 
      } 
    } 
 
    # get mean of test AUCs for each variable group for this iteration 
    for(v in 1:length(envs)) { 
      aucTestAvgs[[v]][i] <- mean(aucs[[v]]) 
      orTestAvgs[[v]][i] <- mean(or10s[[v]]) 
      thrs[[v]][,i] <- thr[[v]] 
    } 
 
 
    message("-", appendLF = FALSE) 
    if(i %% 50 == 0) { 
      message(" ", i) 
      flush.console() 
    } 
  } 
 
  message("Null models complete.") 



  flush.console() 
  return(list(aucs=aucTestAvgs, ors=orTestAvgs, thr=thrs)) 
} 




